
Star Formation 2020
Q&A 12.05.2020

Worked Example - Cloud Collapse and Fragmentation:

a) Jeans scale - repetition from the notes

Estimate the length scale at which the gravitational forces balance the thermal pressure, for an 
isolated cloud of gas with temperature T, density ρ and molecular weight μ (this is a crude estimate 
of the Jeans length). Convert this to a mass scale, which is called the Jeans mass.

There are many ways to derive this length scale, one of them is to use the Virial theorem to calcu-
late the size of a cloud that can balance its self-gravitational energy with its thermal energy:
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b) Effects beyond the balance

What happens to a gas cloud smaller than this length scale? how about larger?

Assuming that all the other parameters remain unaffected, for a cloud smaller than RJ the gravita-
tional and thermal energy follow that  Egrav > 2 Ethermal, and hence the cloud
will be unbound.

On the other hand, if Egrav < 2 Ethermal (and hence R > RJ ) the cloud is bound. Since the gravita-
tional energy scales like R5, while the thermal energy scales like R3, the gravitational force will 
increase more rapidly than the thermal force, and we can have collapse.

c) Minimum collapse mass

Giant Molecular Clouds (GMC) have typical temperatures of T = 15 K, densities of n = 100 cm-3 and 
masses ranging from 105 - 106 M⊙. For this temperature and density, what is the mass of the small-
est gas cloud for which gravity overwhelms internal pressure?
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Out[8]= 407.326

For T = 15 K and n = 100 cm-3, the Jean mass is: MJ = 400M⊙ (this result might vary according to 
the approximations you used when finding the expression for MJ ).
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d) Low mass collapse

Does the limit calculated in (c) mean that stars will form only with high mass?, what would be the 
physical process that leads to formation of less massive stars?. Why does a GMC with a total mass 
larger than this limit not collapse completely?

Observationally, we know that there are stars with mass much less that our limit calculated in (c)

The physical process that we think leads to the formation of low-mass stars in dense cores of GMCs 
is fragmentation. Any inhomogeneity in the density will cause that location to satisfy the Jean mass 
limit and collapse independently of the rest of the core, and hence fragmentation will occur form-
ing multitude of smaller objects. But there are some unresolved issues, like: if this reasoning is 
correct the star formation efficiency will be quite large, but observations show that about 1% of the 
cloud actually form stars, and in this fragmentation scenario how do we form large stars? Although 
a GMC has a mass larger its Jean mass limit it would not collapse because there are other ways to 
support it against gravitation (like magnetic fields, rotation, turbulence, etc.) besides just
thermal pressure.

e) Fragmentation

If the collapse of a cloud is isothermal the Jeans mass will decrease as the density increases, hence  
making it easier for different regions of the cloud to collapse independently and fragment. But it 
appears that there is no limit for how small a fragment will be, since as you get more and more 
dense you can fragment into smaller and smaller objects. The goal of this part is try to estimate the 
minimum mass for which fragmentation will be stopped.

◼ For each of these types of collapse, how does the Jeans mass scale with density?
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For an isothermal collapse: MJ ∝ ρ-1/2. For an adiabatic collapse: T ∝ ργ-1, then MJ ∝ ρ(3γ-4)/2

◼ Calculate what is the energy released by contraction and the timescale for free-fall.

The gravitational potential energy of a self-gravitating object is defined as the negative of the 
amount of energy that is required to disperse its mass to infinity, and can be written as:
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If we assume that the density is constant  throughout the cloud, the previous integral is calculated 
as:
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Free-fall timescale: The equation of motion for a test particle of mass m at a distance r of the center 
of the cloud of mass M and radius R is:

m r
..

= -
G Mr m

r2

Assuming a constant density ρ throughout the cloud we can writeMr = 4π
3 r3 ρ, replacing this

in the previous equation gives a harmonic oscillator:

r
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+

4 π G ρ

3
r = 0

with a characteristic frequency of oscillation ω = 4π
3 Gρ . The typical time scale of the particle to

fall into the gravitational potential of the cloud will be given by the inverse of the frequency of
oscillation:
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~
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◼ If the gravitational energy that is released during collapse can be radiated away efficiently
(i.e. Lcloud = Lgrav∼ΔEgrav /tff) you can keep the temperature nearly constant and have an 
isothermal collapse. But if you can't transport efficiently the energy out of the cloud (i.e. 
Lcloud = e Lrad, where e < 1 is an efficiency factor), the temperature will rise and the collapse will 
be adiabatic. The minimum mass of a fragment arises from the transition between isothermal 
and adiabatic collapse.
Assuming that you are just in the transition point from isothermal to adiabatic, and further 
assume that the cloud is optically thick and in thermodynamic equilibrium, calculate the 
minimum Jean mass for a fragment. Evaluate for typical values: T∼1000K, e∼0.1.

Since we are at the transition point between  adiabatic and isothermal collapse we will have that 
the cloud's luminosity will be equal to the "gravitational" luminosity and to the "radiative" 
luminosity:

Lcloud =
ΔEgrav

tff
= e Lrad

where
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Replacing the radius as a function of mass and density, and using the expression for the Jeans
mass as a function of T and ρ we obtain:

MJ,min = 0.03
T1/4

e1/2 μ9/4
M⊙

Evaluating for typical values: MJ,min∼0.5M⊙

Worked Example:  Bonnor-Ebert Mass
For a given surface pressure Ps and sound speed cs there exists a maximum mass at which an 
isothermal cloud can be in hydrostatic equilibrium, called the Bonnor-Ebert mass. In a typical low-
mass star-forming region, the surface pressure on a core might be  Ps /kB=3⨯105 K cm-3. Compute 
this mass for a core with a temperature of 10 K, assuming the standard mean molecular weight 
μ = 3.9×10-24g. What is the corresponding radius of the cloud?

Solution

From the lecture we know that
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from the ideal gas we know 
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with n the number density of particles (nm is the number of molecules). 
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N

V
kB T = n kBT (5)

p

n
= kB T (6)

Since ρ = nμ we find
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2 =
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inserting (7) into (1) and expanding with kB /kB gives
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In[19]:= Radius[Poverk_, T_, μ_] :=
 1.38066×10-16 T

μ


2 π 6.6726 × 10-8
1.38066 × 10-16 Poverk

-1/2
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In[20]:=

Radius3 × 105, 10, 3.9 × 10-24

3.08 × 1018

Out[20]= 0.0275823

For the mass:

MBE =
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4
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-1/2 (9)

using the same substitutions we find:
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Mass[Poverk_, T_, μ_] :=
2

π

 1.38066×10-16 T

μ

2

6.6726 × 10-83/2
1.38066 × 10-16 Poverk

-1/2

Mass3 × 105, 10, 3.9 × 10-24

9.01442 × 1032

and in units of solar masse:

Mass3 × 105, 10, 3.9 × 10-24  1.989 × 1033

0.453214

 Mass tracer
Consider a molecular cloud in which the volume-averaged density is n = 100 cm-3. Assuming the 
cloud has a lognormal density distribution as given by :

fV,M =
1

2π σx
2

exp -
(x ± μx)2

2σx
2 (11)

In[21]:= Plot[PDF[LogNormalDistribution[1, 1], x], {x, 0, 10}]

Out[21]=
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were the fraction of volume (V) or mass (M) as a function of x = ln(n /n) is given by f(x)ⅆx. The mean 
and dispersion of the distributions are related by μx =σx2/2, and the upper and lower signs corre-
spond to volume- and mass-weighting, respectively.

With a mean μx = 3.0, compute the fraction of the cloud mass that is denser than the critical density 
for each of the transitions from a). 
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In the last problem set we calculated the critical densities of the following lines: CO J = 1→0, CO J = 
4→3, CS J = 1→0, and HCN J = 1→ 0:

Line ncrit [cm - 3]

CO J = 1 → 0 2.2 × 103

CO J = 4 → 3 3.9 × 104

CS J = 1 → 0 4.7 × 104

HCN J = 1 → 0 1.0 × 106

Which of theses transitions are good tracers of the bulk of the mass in a cloud? Which are good 
tracers of the denser, and thus presumably more actively star-forming, parts of the cloud?

In[24]:= Plot3D[PDF[MultinormalDistribution[{0, 0}, {{2, 0}, {0, 2}}], {x, y}],

{x, -5, 5}, {y, -5, 5 }, PlotRange → All]

Out[24]=
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In[25]:= ContourPlot[PDF[MultinormalDistribution[{0, 0}, {{2, 0}, {0, 2}}], {x, y}],

{x, -5, 5}, {y, -5, 5 }, PlotRange → All]

Out[25]=
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Solution

Equation 11 gives the fraction of mass (volume) as a function of x. This  fraction is normalized such 
that the integral over all x is equal to 1, so integrating between two values of x will give us the 
fraction of mass in the given density range. Integrating this equation from x = ln(ncrit /n)  to ∞, we 
obtain the following fractions of mass above the critical density for each molecular transition:

Plot
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ConditionalExpression
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2
, Reσ2 > 0
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fraction[ncrit_] := N
Log[ncrit/100]

∞ 1

2 π 2 × 3
Exp-

x - 32

2 × 2 × 3
 ⅆx

fraction2.2 × 103

0.485176

fraction3.9 × 104

0.112962

fraction4.7 × 104

0.0990301

fraction1.0 × 106

0.00561658

The CO J = 1 → 0 transition is the best tracer of the bulk of the mass because its critical density is 
very close to the maximum in the log normal density distribution (103 cm-3). The CS, HCN and 
uppermost CO transition are the best tracers of the densest regions of the cloud because their ncrit 
values are the largest, and thus they can probe denser regions of the cloud than the other 
transitions.
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